20 research outputs found

    Strongly Hierarchical Factorization Machines and ANOVA Kernel Regression

    Full text link
    High-order parametric models that include terms for feature interactions are applied to various data mining tasks, where ground truth depends on interactions of features. However, with sparse data, the high- dimensional parameters for feature interactions often face three issues: expensive computation, difficulty in parameter estimation and lack of structure. Previous work has proposed approaches which can partially re- solve the three issues. In particular, models with factorized parameters (e.g. Factorization Machines) and sparse learning algorithms (e.g. FTRL-Proximal) can tackle the first two issues but fail to address the third. Regarding to unstructured parameters, constraints or complicated regularization terms are applied such that hierarchical structures can be imposed. However, these methods make the optimization problem more challenging. In this work, we propose Strongly Hierarchical Factorization Machines and ANOVA kernel regression where all the three issues can be addressed without making the optimization problem more difficult. Experimental results show the proposed models significantly outperform the state-of-the-art in two data mining tasks: cold-start user response time prediction and stock volatility prediction.Comment: 9 pages, to appear in SDM'1

    A Non-Parametric Learning Approach to Identify Online Human Trafficking

    Full text link
    Human trafficking is among the most challenging law enforcement problems which demands persistent fight against from all over the globe. In this study, we leverage readily available data from the website "Backpage"-- used for classified advertisement-- to discern potential patterns of human trafficking activities which manifest online and identify most likely trafficking related advertisements. Due to the lack of ground truth, we rely on two human analysts --one human trafficking victim survivor and one from law enforcement, for hand-labeling the small portion of the crawled data. We then present a semi-supervised learning approach that is trained on the available labeled and unlabeled data and evaluated on unseen data with further verification of experts.Comment: Accepted in IEEE Intelligence and Security Informatics 2016 Conference (ISI 2016
    corecore